Proposal of Dynamically Configurable In-Vehicle Network as an Enabler of Software Defined Vehicle

Japan Automotive Software Platform and Architecture IEEE SA Ethernet & IP @ Automotive Technology Day

JASPAR Next Generation High-Speed Network WG Takumi Nomura, Honda Katsuyuki Akizuki, NEC

JASPAR, General incorporated association

JasPa

Yoshihiro Ito [Nagoya Institute of Technology] Hideki Goto [Toyota]

Introduction : About JASPAR

Jas Par © 2022 JASPAR All Rights Reserved.

Introduction : Next Generation High-Speed Network Working Group

Next Generation High-Speed Network Working Group

To define standard specification of high reliability technology of in-vehicle high-speed networks with an eye focused on control system applications, and to define vehicle requirements/problem extraction and solution method of Automotive SDN (Software Defined Networking), Automotive TSN, 10Gb/s class Ethernet and SerDes.

Introduction : 3 Presentations From JASPAR

Team Composition of Next Gen. High-Speed Network WG

Contents

- Concept of JASPAR SDV
- Automotive SDN as a SDV network
- Mechanism and Functions of Automotive SDN
- Use Cases of Automotive SDN
- Requirements of Automotive SDN
- Future Work

Background -History of JASPAR SDN

JASPAR has recognized the need to incorporate SDN into the automotive network early. The application of SDN to in-vehicle networks is finally becoming a reality.

Furthermore, a new concept of Software Defined Vehicle is emerging and attracting attention now. We'd like to show that SDN will be even more necessary for in-vehicle networks in the SDV era. Hopefully, this presentation will accelerate broader discussion and standardization.

- We first discuss what should the network look like for SDV ?
- We then propose JASPAR's vision of Automotive SDN as an enabler for SDV.

		Future work 2
TSN for automotive SDN ~ Update of Use cases	★ Overview of structure with SDN	The introduction of SOA platform makes in-vehicle services frequent updates with ease (including additions and deletions). With the service update, it is necessary to flexibly change the related network settings (QoS, bandwidth, routing, etc.).
Japan 2021.3.9 Automotive Next Generation High-Speed Network WG Software Platform and Architecture	 Network controller <u>Conduct centralized control and management of networks and traffic</u> based on collected network information Switch Control traffic flow based on "flow table" 	In-vehicle SDN (Software Defined Networking) that enables dynamic network changes is expected.
Yoshihiro Ito (Nagoya Institute of Technology) Tatsuya Izumi (Sumitomo Electric)	Inform network controller of <u>detected failures and traffic</u> <u>statistics</u> periodically.	Future work of JASPAR
Katsuyuki Akizuki (HC-) Takumi Nomura (Honda) Hideki Goto (Toyota) JASPAR, General incorporated association	Network controller	We study requirements, architecture and realization method for in-vehicle SDN (effective use of TSN, coexistence with SOA protocols, etc.). (Example) -Faceibility study of applying TSN
	Control/manage Network information (Statistics, failure,) Switch	•Which TSN protocol can be subject to SDN configuration changes
	ECU Falure detector Treffic Betheret Pow table	Future work will contribute to TSN automotive profile of IEEE P802.1DG.
	IEEE P802.1DG, March 2021 Plenary 5	Ver.20210611 20

Y. Ito, et al. "TSN for automotive SDN – Update of Use cases," IEEE 802.1DG contribution, Mar. 2021.

T. Nomura, et al. "What is the conqueror in the SOA platform for the future in-vehicle networks? - A study based on JASPAR's automotive use cases," EIPATD Additional Presentation, 2021.

The Concept of JASPAR's SDV

JASPAR's SDV (as an evolution of OTA)

- Control according to the context
- Autonomous control (even if not connected to the cloud)
- Respond in a short time
- Changes in services and functions according to user requests

Jas Par © 2022 JASPAR All Rights Reserved.

To realize the JASPAR's SDV, the Network should be as follows:

- The Network should have a mechanism that changes the network according to the context.
- The Network should be changed with sufficient immediacy to ensure the services. (Ex: in milliseconds)
- ◆ The Network doesn't need the connection to the cloud every time.

We call this new network as an enabler of SDV "Automotive SDN"

SDN model

Definition of Automotive SDN by JASPAR

Example of SDN definition *

SDN is a network architecture where (1) forwarding is decoupled from network control and (2) there is more freedom of choice in programming the forwarding logic.

JASPAR's definition

JASPAR's SDN is a network architecture where forwarding is decoupled from network control and there is more freedom of choice in programming the forwarding logic for in-vehicle networks; it can realize dynamic configuration.

[*] B. Naudts, M. Kind, F.-J. Westphal, S. Verbrugge, D. Colle and M. Pickavet, "Techno-economic Analysis of Software Defined Networking as Architecture for the Virtualization of a Mobile Network," Proc. European Workshop on Software Defined Networking, 2022.

Since Automotive SDN controller has to control the network autonomously according to the context and demands, we need such a dynamically configurable network.

SDN activation scenario

Examples of SDN Functions

1. Dynamic Routing

3. Flexible Redundancy

Use Case (OTA only)

- Stops
- Program Update
- PnP

Use Case (OTA & SDN)

Use Case (OTA & SDN) Architecture

Use Case (OTA & SDN) Architecture

Use Case (OTA & SDN) Parking

Use Case (OTA & SDN) Manual driving

Use Case (OTA & SDN) Automatic driving

Use Case (OTA & SDN) Security

Use Case (OTA & SDN) Failure

Use Case (OTA & SDN) Goal (Eco-driving)

Based on our investigation of the use cases, we clarified some requirements as follows,

The mechanism to change the networks according to the context is required.
 ✓ Re-Configure the TSN parameters will be an effective method.

2) To realize sufficient immediacy, the SDN controller should be mounted in the car.
 ✓ Synchronization and Simultaneity will be required further.

3) Based on the current context, the SDN controller should perform autonomously.
 ✓ External vehicle communication is not always possible.

We propose some requirements of "Automotive SDN". Further investigation is needed to clarify all the details.

Two types of SDN to be considered

- TSN by SDN (Control TSN parameters by SDN)
 - Bandwidth allocation (Qav, Qbv, Qcr, ?)
 - Block (Qci, ?)
 - Redundancy (CB, ?)
 - Dynamic Routing (Qci, ?)
- TSN for SDN (TSN's requirements for SDN)
 - Synchronization and Simultaneity (AS, Qav, Qbv, ?)
 - Platform (Qcc, ?)

We will propose TSN by/for SDN to IEEE 802.1DG

SDV needs Automotive SDN.

It would be fine if there was SDN instead of just OTA.

Future Works:

- Security
- Architecture
- Protocols
- Evaluation

We would like to call for positive and wide-ranging discussions and wholesome standardization.

If you want to create Automotive SDN, discuss with JASPAR !

Thank you for your kind listening.

