

Ethernet-as-a-Service for Software Defined Vehicles:

Design objectives and orientations for an Ethernet-based network stack

Pierre LACLAU – PhD Student

with Xiaoting LI and Trista LIN 2022 IEEE Standards Association

Introduction	Objectives	Technologies	Ethernet-aaS	Implementation	Discussion
Use Cases	– Ecosystem	_ Timing	– XaaS Inspiration	Proposition	- Future guidelines
E/E Evolution	Requirements	Routing	– EaaS Concept		Open questions
Ethernet role		Service-oriented	Map of Ethernet		
Agenda		L Management			

heudiasyc

STELLANTIS

dutc

Automotive Evolution – Use Cases A profound digital transformation

Two major digital transformations

Sustainability Shared & Robo vehicles, Micromobility, Smart Grid, Automated Driving, Cooperative Services

User Experience Connectivity, Smartphone on Wheels, Personalization, Subscriptions, Regular Updates

Images: Ralf Marquard from LHP Europe, Eliane Fiolet from Ubergizmo

Chapter 2: State of the Art

Next up: Overview of the current technologies (existing or under development, research, standards)

Ethernet Timing One cable, Mixed-criticality QoS Transport

Mixed-QoS Networking

High diversity of available technologies

Choice of solutions Adaptability Flexibility Interchangeability Interoperability Configuration Hard Real Time

TSN - Time Sensitive Networking

1. Synchronization 802.1AS Time Synchronization

2. Latency

802.1Qav Credit Based Shaping
802.1Qbv Time Aware Shaper
802.1Qcr Asynchronous Traffic Shaping
802.1Qbr/bu Frame preemption

3. Reliability & Safety

802.1Qci Per-Stream Filtering, Policing **802.1CB** Frame replication, elimination

4. Management & API

YANG Configuration via NETCONF Dedicated APIs for Qbv, Qav, ...

Soft Real Time

Strict priorities, higher bandwidth

5. Strict priority

Statistical analysis Like in CAN buses **Traditional** priority-based shaping

6. Rate Limiting 802.1Qav Credit Based Shaping

Best Effort

Stream reservation, higher bandwidth

7. Reservation

Bandwidth reservation at design stage Higher bandwidth despite costs Scheduling best-effort aware

2022/11/09 Stellantis – IEEE SA – Ethernet & IP @ Automotive Technology Day

→ Question: How can we make modules interact?

Ethernet Timing Multiple possible technology combinations

Ethernet Timing Mixed-criticality QoS requirements

Ethernet Routing Dynamically reconfigurable networking

Common interfaces Centralized monitoring Global & Dynamic (re)configuration

▶ Problem: TSN must be configured based on external parameters...

➡ Question: How to create coherent configurations through the stack?

- Method: Interfaces + States standardization 2.
- **Solution:** Take inspiration from Cloud Computing 3.

Ethernet Technology Map High diversity, high complexity

Objectives

Conclusion so far...

Introduction

- High diversity is good for choice 1.
- Different combinations will exist 2.
- 1 module, many implementations 3.

[Technologies]

Infrastructure Management

Ethernet Components

ZOA E/E Topology

Chapter 3: Integration

Next up: Inspirations from other industries that could help us define a fully integrated Ethernet solution

Implementation

Cloud Computing Architectures Everything-as-a-Service (XaaS)

Automotive only: Common features: IT only: X Storage Orchestration V Service Scheduling 👝 Low & embedded resources Backups & Rollbacks Service Discovery X Batch Execution Real-time functions Network config. Safety Self-Healing Redundancy B (or ECUs) Stellantis – IEEE SA – Ethernet & IP @ Automotive Technology Day 2022/11/09

Software Defined Vehicle "Data Center on Wheels"

- **1.** Flexible & Instantaneous Updates
- **2.** Easy monitoring & diagnostics
 - 3. Virtualized networking
 - 4. Plug-and-play solutions
 - 5. Dynamic service scheduling
 - 6. Standardized Interfaces

🛞 kubernetes 🛛

openstack.

Implementation

SDVs are (kind of) like the Cloud Similar problem, different constraints

Why not do the same?

Software Defined Vehicle Stack Dynamic service management

Objectives

Introduction

Current challenges:

- 1. Virtual environments
- 2. QoS Management
- 3. Dynamic mechanisms

➡ Question: How can we design and implement a self-contained Ethernet?

Discussion

Introd	duction	Objectives	Technologies	Ethernet-aaS	Implementation	(Discussion)	STELLANTIS	
Dis Our Sum 1. 2. 3. Prop	scussion r take of mary Interchang A common Ethernet-a	on the next geability is what t a language can be as-a-Service is a p	the industry needs made from standard promising way to org	dized APIs ganize our standard	ls	Physics Topolog Cloud-based pre-computing In-vehicle Online Allocation	Interfaces al Runtime Requests Ethernet as-a-Service Real-time, Latency, Safety, Security, Energy, Costs Continuous User Experience	
1. 2.	Discuss ho Standardiz	w to define an ap ze the common ve	plication's requireme hicle state represent	nts ation first		Takeaway		
3.	3. Adopt XaaS from Cloud Computing for a loosely coupled architecture					SDV development will need attention on		

"Common Data Representation for Ethernet Requirements"

Designing a safe, real-time, secure, embedded, and cost-effective Data Center that can be used like a Smartphone (oh, and it aka. Software Defined Vehicles. can drive)

Thank you for your attention!

Pierre LACLAU, Xiaoting LI and Trista LIN

IEEE SA 2022 – Automotive Technology Day pierre.laclau@stellantis.com

