## **Real Life performance of IEEE 1722 Control Format (ACF)** in future oriented networking architectures



Networking made simple

#### **Real Life performance of IEEE 1722 Control Format (ACF)** in future oriented networking architectures



- Conventional Automotive Networks and AVTP Control Format (ACF)
  - Transition from Domains to Zones
  - Data path from peripheral devices on the network
- Benchmark set-up
  - Real life scenario signal paths with UDP and ACF communications
- Comparisons and results
  - Data throughput and performance between UDP and ACF in Zonal Architecture
- Further optimization possibilities
  - Efficiency increase with a Distributed Data System
- Summary and outlook



• Transition from Domain Architecture to Zonal Architecture

#### **Domain Architecture from Networking Perspective**

- Access to ECUs, sensors and actuators handled by the Domain Controller
- Communication between the Domain Controllers requires gateways



- Conventional Networks
- Communications over:
- CAN
- LIN
- FlexRay
- Domain specific real time constraints
- Central gateways distributing signals
- Signal to Service translation

## **Real Life performance of IEEE 1722 Control Format (ACF)** From Domains to Zones



Transition from Domain Architecture to Zonal Architecture



 Transitioning requires efficient methods to exchange signalbased information with conventional networks

- **Conventional Networks**
- Relevant for communications
  - Sensors
  - actuators
    Legacy ECUs
- Mostly CAN to Ethernet traffic
- Directly connected to the Zonal Device (Zone Gateway)
- Signal data converted in Zonal Device with a gateway
- Data is consumed in other Zone Devices and the Central Computer



- Ideal conditions for ACF
  - Timing information can be preserved
  - Messages can be transferred by relatively easy means
  - AVB/TSN Mechanisms guarantee bandwidth
  - Reduce overhead in the device where data from conventional networks is aggregated
  - Maintaining and potentially improving performance



= ECU, sensor or actuator

- ACF: Potential Advantages
- Bandwidth reservation
- Reduced overhead
- Simple and easy
- Already widely available technology

# 

#### Data path ACF communications

- Messages aggregated and sent over ACF
- Aggregated messages are sent to other Zonal Devices and Central Computer Device
- Signals are extracted where needed
- ... and timing information is preserved

- Performance hotspot
- Data aggregation on zone device
- High performance requirements
  - Short messages with high frequency
  - Data is expanded and presented for consumption on central device



= ECU, sensor or actuator

• Data Path for Conventional Networks

#### Data producers can be optimized

- Simple to send aggregated messages
- Easy to send synchronized data
- Data consumers can use information and repackage signals as needed
- Control data can be sent back to ECUs on this same way

So much for theory... So how does this work in practice?



- Data path
- Priorities can be set
  - Streaming classes
  - Bandwidth reservation
- Straight forward bandwidth management
- Data is synchronized
- Deterministic max transit time



## **Benchmark set-up**

8

### **Real Life performance of IEEE 1722 Control Format (ACF)** Real life scenario



Representative Data Path in Zonal Architecture



- **Key Points**
- Input on CAN Bus
- Known systems and platform
- Baseline for comparison:
  - Amount of data traffic remains constant
  - Performance as a function of resource consumption
  - Consumer application on Central Computer

It is estimated that 90 - 96% of all routing operations are from CAN/LIN to Ethernet

### Real Life performance of IEEE 1722 Control Format (ACF) Benchmark set up



- Configuration
  - Same device for data producer (CETiBox 1) and consumer (CETiBox 2)
  - Test set-up consistent with current automotive applications
  - Devices are not optimized for networking performance
  - Input on CAN 1 and CAN 2



- Data path
- Input: CAN 1 and 2 to Zonal gateway
- Input CAN messages multiplied to generate traffic between CETiBox 1 and 2
- Output sent to Central Device
- Unpacked by receiving application
- Simulate a data consumer and generate overhead

#### **Real Life performance of IEEE 1722 Control Format (ACF)** Benchmark set up for UDP



Configuration for UDP





### **Real Life performance of IEEE 1722 Control Format (ACF)** Benchmark set up for ACF



Configuration for UDP



Ethernet

- Test Configuration
- CAN Bus input with message injection
  - CAN1: 100 msg/s 8 bytes payload
  - CAN2: 100 msg/s 8 bytes payload
- Input msg/s as reference
- Generate different message loads (message injection)
  - 10K msg/sec
  - 15K msg/sec
  - 20K msg/sec
- 24 Bytes per input message packetized: collect N messages ((msg/sec)/750) and send without delays
- Interfering traffic: 5K msg/sec TCP traffic with light payload

#### **Real Life performance of IEEE 1722 Control Format (ACF)** Benchmark set up for ACF



Configuration for ACF



### **Real Life performance of IEEE 1722 Control Format (ACF)** Benchmark set up for ACF



Configuration for ACF



- Test Configuration
- CAN Bus input
  - CAN1: 100 msg/s 8 bytes payload
  - CAN2: 100 msg/s 8 bytes payload
- Input msg/s as reference
- Generate different message loads (message injection)
  - 10K msg/sec
  - 15K msg/sec
  - 20K msg/sec
- Interfering traffic: 5K msg/sec TCP traffic with light payload
- ACF Class C(750 msg/sec)



## **Comparisons and results**

### **Real Life performance of IEEE 1722 Control Format (ACF)** Data throughput and performance



• Performance comparison: ACF Talker vs. Sender using UDP

| Configuration                        | 10K msg/sec            | 15K msg/sec | 20K msg/sec |  |  |
|--------------------------------------|------------------------|-------------|-------------|--|--|
| Reference using UDP                  | Reference level (100%) | -           | - 0,1%      |  |  |
| Using ACF                            | +0,1%                  | +0,1%       | +0,1%       |  |  |
| Results with Interfering TCP traffic |                        |             |             |  |  |
| UDP<br>+ 5K msg/sec TCP traffic      | +2,3%                  | +2,1%       | +2,3%       |  |  |
| ACF<br>+ 5K msg/sec TCP traffic      | +3,4%                  | +2%         | +1,5%       |  |  |

- + denotes a performance penalty, denotes performance benefit
- Performance is averaged over a 60 seconds interval with the sampling delayed for 120 seconds once communications have been stablished
- All input messages are transmitted to the output. 0% drops

### **Real Life performance of IEEE 1722 Control Format (ACF)** Data throughput and performance



• Performance comparison: ACF Listener vs. Receiver using UDP

| Configuration                        | 10K msg/sec            | 15K msg/sec | 20K msg/sec |  |  |
|--------------------------------------|------------------------|-------------|-------------|--|--|
| Reference using UDP                  | Reference level (100%) | +0,1%       | - 0,1%      |  |  |
| Using ACF                            | -0,1%                  | +0,3%       | -0,1%       |  |  |
| Results with Interfering TCP traffic |                        |             |             |  |  |
| UDP<br>+ 5K msg/sec TCP traffic      | +1,7%                  | +1,8%       | +2,5%       |  |  |
| ACF<br>+ 5K msg/sec TCP traffic      | +1,7%                  | +3,1%       | +1,7%       |  |  |

- + denotes a performance penalty, denotes performance benefit
- Performance is averaged over a 60 seconds interval with the sampling delayed for 120 seconds once communications have been stablished
- All input messages are received

### **Real Life performance of IEEE 1722 Control Format (ACF)** Data throughput and performance



• ACF compared to UDP communications

#### **In Zonal Architecture**

 No significant difference in performance could be observed under the benchmark conditions

What is **actually** obtained:

- Guaranteed max transit time using
- Bandwidth reservation
- Reuse of simple and universally available AVB/TSN mechanisms
- ACF preserves timing information at message level
- Relatively easy configuration for message forwarding



## **Further optimization possibilities**

### **Real Life performance of IEEE 1722 Control Format (ACF)** Further optimization possibilities



• The best interrupt is the one that doesn't come...



#### **Optimization potential**

- Selective channel usage based on what data the application consumes
- Flexibility to adapt to different load scenarios
- Even easier configuration workflow
- Signal level optimizations

### **Real Life performance of IEEE 1722 Control Format (ACF)** Further optimization possibilities



•Flexible optimization with a Distributed Data System

- Simple data producer implementation
- Flexible database deployment
- In-memory database
  - CRUD (Create, Read, Update and Delete) interface
  - Non-relational
  - gPTP derived time stamps for data synchronization and data expiration
  - Data throttling and filtering on Signal level
- Self describing binary format

#### Using IEEE 1722 ACF mechanisms for simple and reliable data transfer



## **Summary and outlook**

**Real Life performance of IEEE 1722 Control Format (ACF)** Outlook and Future Work



#### Using IEEE 1722 ACF

Has the additional benefits of AVB/TSN mechanisms

#### For simple and reliable data transfer

- AVB/TSN mechanisms already widely available
- Data can be packaged **easily and efficiently** in ACF messages

#### Can be further improved

- Selectively packaging and sending on signal level
- Data throttling and filtering at the producer

- Scope of future work:
- Performance evaluation with further scenarios and criteria

connective technologies

- Optimizations in ACF talker and listener implementation
- Performance difference when is sent with ACF class A and B
- Further improvement with a Distributed Data System approach



## Thank you very much!

For further information, please contact: joe.nguyen@cetitec-usa.com pablo.granados@cetitec.com



© CETITEC GmbH. All rights reserved.