Concept of test points in in-vehicle optical physical layer standardization for multi-vendorization

Japan Automotive Software Platform and Architecture

IEEE SA Ethernet & IP @ Automotive Technology Week November 10, 2022 @ Yokohama

JASPAR Next Generation High-Speed Network WG

Keisuke Kawahara, Furukawa Electric Naoshi Serizawa, Yazaki Manabu Kagami, Nagoya Institute of Technology Hiromasa Tanaka, Japan Aviation Electronics Industry Masato Shiino, Furukawa Electric Takumi Nomura, Honda Hideki Goto, Toyota

JASPAR, General incorporated association

Introduction : About JASPAR

Introduction : Next Generation High-Speed Network Working Group

Next Generation High-Speed Network Working Group

To define standard specification of high reliability technology of in-vehicle high-speed networks with an eye focused on control system applications, and to define vehicle requirements/problem extraction and solution method of Automotive SDN (Software Defined Networking), Automotive TSN, 10Gb/s class Ethernet and SerDes.

Introduction : 3 presentations from JASPAR

Team Composition of Next Gen. High-Speed Network WG

Contents

- JASPAR Next Generation Technology Study Team
- Background
- JASPAR Optical Physical Layer Scope
- VCSEL Test
- Test Point
- Third-party Certification
- Conclusions

JASPAR Next Generation Technology Study Team

Focus on Automotive Ethernet Multi-Gig (Electrical/Optical) and 10 Mb/s

Background : Why Optics?

OEMs Requirements

(1) EMC resistant

(2) High-speed communication

(3) Weight saving and low power consumption for CO2 reduction

(1) Use cases – Why optics?

(2) Market Drivers Optical multi-gig use cases

· Provided by OEMs specialists:

Smart Antenna 2.5 Gbos 5 Gbos 10 Gbos 25 Gbos 50 Gbos Unidirection 00 Backbone Smart Antenna \odot \odot Camoras, Sensors Use optica to avoid noise Weiaht 4a/m Weight 40g/m Display Smart Antenna Φ 5.5mm Φ 2mm Any small radiation from the copper link will reduce Copper Link Data Loggers Attenuation Attenuation the reception dynamic range of the antennas 0.003 dB/m @ 850nm 2.2 dB/m @ 4GHz

© 2022 JASPAR All Rights Reserved.

IEEE 802.3 CFI July 2019: Automotive Optical Multi-Gig PHY

IEEE 802.3 CFI July 2019: Automotive Optical Multi-Gig PHY Source: https://www.ieee802.org/3/cfi/0719 1/CFI 01 0719.pdf

Carlos Partio

JasPar

Feature of Optical component

- Optical fiber is no emission noise and no affected noise
- Quick response and Broadband
- Light weight

Carlos Pardo

Low power consumption

(3) Optical fiber vs Electrical wire

(IEEE Std 802.3ch™-2020,

IL Fmax 4GHz)

JASPAR Optical Physical Layer Scope

JasPar Scope -PHY to PHY -10 Gb/s

Media	Glass, Plastic	
Length	~ 40 m	
Wavelength	850 nm ~ 980 nm	

■ JASPAR has started two types of VCSEL tests as light source candidates for IEEE P802.3cz and P802.3dh

Test points are required for component test and thirdparty certification

-JASPAR contributed to the standardization of ISO21111-4 as a component standard and test standard for gigabit optical Ethernet communication using POF -ISO21111-4 clarifies the test points for the purpose of

component test and third-party certification

■ Third-party certification is required

-To develop and manufacture components that comply with standards

-To ensure interoperability

VCSEL Test : Objectives

- JASPAR believes that multivendor environments for components are essential for the spread of Automotive Optical Ethernet
- In OPEN Alliance TC7, the necessity of setting test points is discussed before and after FOT (Fiber optic transceiver)
- However, regarding the semiconductor laser light source (or VCSEL), which is the main component of FOT, two wavelengths have been discussed in IEEE P802.3cz and P802.3dh, but only one manufacturer has been reported for each wavelength (1),(2)
- This presentation finds a VCSEL that can be substituted for each wavelength and evaluates its communication performance

Ref. (1) Wavelength: 850 nm (Broadcom): <u>https://www.ieee802.org/3/cz/public/15_jun_2021/giovane_3cz_01a_150621.pdf</u> (2) Wavelength: 980 nm (Trumpf): <u>https://www.ieee802.org/3/cz/public/may_2021/perezaranda_3cz_01_0521_VCSEL_980nm.pdf</u>

VCSEL Test : Two VCSELs Evaluation

Chip vendor	VIS
Model number	V25-850C-HT
wavelength	850 nm
bandwidth	25 Gb/s

Chip vendor	Inneos	
Model number	V980-10GXA-1TGA	
wavelength	980 nm	
bandwidth	10 Gb/s	

https://v-isystems.com/wpcontent/uploads/2020/12/ VIS-Datasheet-V25-850C-HT.pdf

https://www.inneos.com/wpcontent/uploads/2022/02/In neos-Datasheet-VCSEL-10Gbps-980nm-40C-to-125C.pdf

Test items:

- Static characteristics (I-V-L)
- > Frequency response
- \succ Relative intensity noise (RIN)
- Eye pattern improvement by applying DSP

Evaluation module

The VCSEL chip was implemented in the evaluation module reported by KDPOF in IEEE⁽¹⁾

(1) https://www.ieee802.org/3/cz/public/jul 2020/perez aranda OMEGA 01b 0720 VCSEL test methods.pdf

VCSEL Test : I-V-L (static) Characteristic

VCSEL I-L property

VCSEL Test : Frequency Response and RIN OMA

Frequency response

850 nm-VCSEL/VIS

RIN OMA

980 nm-VCSEL/Inneos

850 nm-VCSEL/VIS

980 nm-VCSEL/Inneos

VCSEL Test : Eye Pattern Evaluation

VCSEL

Jas Par © 2022 JASPAR All Rights Reserved.

850 nm-VCSEL/VIS

980 nm-VCSEL/Inneos

13

Tested two commercial VCSEL chips:

(1) I-V-L, (2) frequency response, (3) RIN OMA, (4) eye pattern evaluation (-40 \sim +105 °C)

VCSEL	Catalogue spec.		Actual operation
vender	wavelength	rate	10 Gb/s (-40 ~ +105 °C)
VIS	850 nm	10 Gb/s	Excellent
Inneos	980 nm	10 Gb/s	Excellent

Future work:

- Evaluate the actual system performance
- Optimize the launching optical condition, VCSEL bias current and optical waveform DSPs, etc.

Confirmed VCSELs are applicable to in-vehicle applications

Test Point : Why Standardized Test Points are Needed

Test Point : Use Case Study

Use cases considered for in-vehicle Ethernet under OPEN Alliance

1) Smart Header and Plug (Integrated PMD/PCS and Driver/TIA)

2) Smart Header and Plug (Separated PMD/PCS and Driver/TIA)

4) Active Optical Component (AOC) (Separated PMD/PCS and Driver/TIA)

Set test points corresponding to various use cases

Test Point : Proposal

Function

The definition of TPs are necessary for a uniform evaluation

Third-party Certification : Conformance Test

Test point: Define I/F requirements

- \rightarrow Input / output condition of the component
- \rightarrow The performance and quality of the component can be confirmed

If each part satisfies the TP requirements, the communication establishment of the entire system can be confirmed

Third-party Certification : Procedure

6 Authentication tests \rightarrow Issue Certification report

Enable to ensure the establishment of overall communication even when parts from different suppliers are connected

Optical Ethernet

Time domain analysis (High-speed optical waveform evaluation system)

- ➤ ~ 100 Gb/s (50 Gbaud-PAM4), @-50 ~ +150 °C
- TDECQ / TDFOM evaluation

Frequency domain analysis

▶ 100 k ~ 44 GHz network analyzer (4ch)

Space (or optical) domain analysis

- ➢ NFP/FFP evaluation system
- > Optical spectrum analyzer, wavelength: $0.6 \sim 1.7 \,\mu m$

CffC/NITech

Electrical Ethernet & EMC

Compliance & Level evaluation

- ➤ 100BASE-T1, 1000BASE-T1 (<u>Tx, Rx, Lx</u>)
- ▶ 10BASE-T1S (Tx)
- MultiGigBASE-T1 (2.5 GTx, Lx), other: 2023~

Frequency domain analysis

> DC ~ 40 GHz network analyzer (4ch)

EMC

- Emission / DPI / BCI&TWC / ESD
- Transmission Line Pulse (TLP) 2023~

CffC/NITech

Third-party Certification : Test House

Center for Future Communication Research (*CffC*), Nagoya Institute of Technology (NITech)

Mission & Scope:

Contribution to society regarding higher reliability of mobility communications, especially for automobiles

- Basic research (light propagation, QoS, EMC, …)
- Standards (ISO, IEC, IEEE)
- Test House (L1 (Opt/Elec), L2, EMC)

History & Plan:

Jan. 2021 Established *CffC* at NITech Mar. 2023 Scheduled to open test house

http://cfcr.web.nitech.ac.jp/english/index_en.html

Conclusions

✓ Optical components are

- highly EMC resistant
- able to communicate at high speeds
- able to reduce CO₂
- \checkmark VCSEL has a good performance from -40 \sim +105 °C temperature environment
- ✓ Confirmed VCSELs are applicable to in-vehicle applications
- ✓ Test point definition is mandatory for the component test to be guaranteed whole network system
- ✓ Establishing test house at Nagoya Institute of Technology (NITech) in Japan

Preparing to install optical communication system at any time!

Thank you for your kind listening.

