Comparing the adoption of TSN between automotive and nonautomotive networks

Avik Bhattacharya	2020
Product Manager, Network test solution	ons, Keysight
KEYSIGHT TECHNOLOGIES	
	-

IEEE Ethernet & IP @ Automotive Technology Week, Sept 2020

What is common in these industries?

LOW & DETERMINISTIC LATENCY

GUARANTEED DELIVERY

Scenario 1: A semiconductor fabrication plant

....

Controller

....0

0.....

CHIP

Camera Vision Sensor

Vibration Sensor

 \mathcal{M}

Reaction Latency < 100 ns

Scenario 2: A 5G fronthaul network carrying radio data

Scenario 3: Audio Video broadcasting network

The TSN "ToolBox" approach

The Network requirements are very different from each other

Characteristics	Automotive	Industrial	Pro AV	5G RAN
Network Size	Small	Medium	Medium / Large	Large 🛛 🔴
Network Type	Static	Mixed	Mixed	Dynamic
Interface speeds	Mostly <= 1G Occasionally 2.5/5/10GE	< 10GE	Mostly 10/40 GE Occassionally 100GE	10/25/50/100GE
Traffic Types	Engineered	Engineered	Engineered	Non-Engineered
Eliminate complexities change in confi over network	es from guration lifetime		Gain of preemption diminishes with higher link spee	n ed

(EYSIGH⁻

Implementing Redundancy is expensive for large networks

Time based traffic shaping is more effective in engineered networks

The Latency requirements vary based on application needs

TABLE I END-TO-END LATENCY AND JITTER REQUIREMENTS FOR TYPICAL ULL APPLICATIONS

Aroo	Application	QoS Requirements	
Alta	Application	Latencies	Jitter
Medical [47]–[49]	Tele-Surgery, Haptic Feedback	3–10 ms	< 2 ms
	Indust Automation Control Syst	0.2 μ s–0.5 ms for netw. with 1 Gbit/s link speeds	meet lat. req.
Industry [50]	indust. Automation, Control Syst.	25 μ s–2 ms for netw. with 100 Mbit/s link speeds	meet lat. req.
	Power Grid Sys.	approx. 8ms	few μs
Banking [51]	High-Freq. Trading	< 1 ms	few μ s
Avionics [52]	AFDX Variants	1–128ms	few μ s
	Adv. Driver. Assist. Sys. (ADAS)	100–250 µs	few μ s
Automotive [53]–[56]	Power Train, Chassis Control	$< 10 \mu { m s}$	few μs
	Traffic Efficiency & Safety	< 5 ms	few μs
Infotainment [57]	Augmented Reality	7–20 ms	few μs
	Prof. Audio/Video	2–50 ms	$< 100~\mu { m s}$

Source: Ultra-Low Latency (ULL) Networks: The IEEE TSN and IETF DetNet

Standards and Related 5G ULL Research

How are Keysight's customers using TSN?

	AVB/TSN Sta	andards	Automotive	Industrial	Pro AV	5G
Time	802.1AS	Adopting	Adopting	Adopting	Using	
Sync	/nchronization	802.1AS-Rev	Adopting	Adopting	Exploring	
Troff	Traffic Shaping	802.1Qav	Adopting	Adopting	Adopting	
Iran		802.1Qbv	Adopting	Adopting		
Pre	Frame eemption	802.1Qbu	Exploring	Adopting		Using
Re	dundancy	802.1CB	Adopting	Exploring	Exploring	
Filter	ing Policing	802.1Qci	Adopting	Exploring	Exploring	
Cor Ma	nfiguration nagement	802.1Qcc		Exploring	Exploring	
		4			2	
			e (*)	80 B	91	

COMPARING TSN METHODS USED ACROSS INDUSTRIES & VALIDATION METHODS

- 10

Industrial vs Automotive : Dynamic network configuration

-11

Industrial vs Automotive : Dynamic network configuration Tests performed at the IIC Plugfest with a Qbv switch

https://www.ixiacom.com/resources/validating-time-sensitive-networking-tsn-iicplugfest-report

KEYSIGHI

Validating Time-Sensitive Networking (TSN)

Industrial Internet Consortium (IIC) Plugfest

Find up at some biaccompany

5G RAN vs Automotive : More Stringent Latency

- More stringent Latency
- End-to-end 100us over 20km
- Other Traffic not predictabl

AUTOMOTIVE

- Relatively Lenient
- Traffic Engineering Possible
- Frame preemption not required

5G RAN vs Automotive : More Stringent Latency IxNetwork tests performed by the 5G fronthaul vendors

Validate Fragmentation capability of the switch

- 1. Emulate a mix of Express radio traffic and low priority preemptable traffic
- 2. Validate the fragmentation done at the fronthaul switch at line rate
- 3. Ensure latency guarantee of the express radio traffic.

Test Reassembly Capability Preempted Streams

Reassembled Streams

Listener

14

Validate Reassembly capability of the switch

 Emulate a mix of fragmented traffic and Express radio traffic.

DUT

- 2. Ensure these is no loss for the fragmented traffic.
- 3. Validate reassembly of fragments by the receiving fronthaul switch.

https://ixia.keysight.com/company/blog/tsn-frame-preemption-meets-stringent-latency-requirements-5g-fronthaul

Talker

clock

targe

target

KEYSIGH1

Open Networks vs Automotive : 1588 Time Domains *Validation method of 802.1AS2020 by Automotive engineers*

- Validating Domain gateways which are part of two different time domains
- Validating PTP enabled nodes are able to maintain time sync based on ARB time scale

Time Synchronisation Redundancy Used in Automotive vs Non-Automotive

Automotive

- GM roles are preconfigured into ECU's and doesn't change too often.
- Need for running BMCA is less as new node addition to IVN is not a dynamic process.
- In absence of BMCA, Standby GM is best option for maintaining synchronization in case of a Node Failure.

Non-Automotive

- GM roles are not preconfigured in nodes that part of an Industrial Network.
- Whenever there is need for re-electing GM, BMCA runs across to elect the best clock as GM.
- Multiple domains can be still used in industrial networks, but Standby GM can be avoided.

KEYSIGHT TECHNOLOGIES