
March 9, 2005

1 of 16

GDL:
General Description
Language

1.0 Introduction

GDL (General Description Language) is the modeling language of the IBM Formal Verification
Toolset. Its primary purpose is to describe the environment for formal verification. However, it is also
used in conjunction with PSL to aid specification of a design.

This document describes the GDL language.

2.0 Language Constructs

2.1 Expressions

2.1.1 Variables and constants

The basic expressions are numbers, enumerated constants, or variable references.

A number is a decimal if it has only decimal digits and no suffix (e.g. 1276). A binary number con-
sists of binary digits and ends with ‘B’ (e.g. 1011B). A hexadecimal number begins with a decimal
digit, has hexadecimal digits and ends with ‘H’ (e.g. 7FFFH, 0FFH). Note that RuleBase infers the
width of constants from the context in which they are used and not from their format. For example,
0010B can be assigned to any bit vector that has at least two bits.

Language Constructs

2 of 16 GDL: General Description Language

An enumerated constant is one of the symbolic values which a variable can take on. For instance, if
we declare the following:

var state: {idle, st1, st2, st3, waiting};

then each of the 5 symbolic values “idle”, “st1”, “st2”, “st3”, and “waiting” are enumerated constants.

A variable reference has one of the following formats:

name -- simple variable

name(number) -- one bit of array

name(number..number) -- a range of bits

Variables are described in Section 2.2.
Arrays are described in Section 3.0.

2.1.2 Operators

An expression can be a combination of sub-expressions, connected by operators:

Boolean connectives:

! expr not

expr & expr and

expr | expr or

expr ^ expr (or: expr xor expr) xor

expr -> expr implies

expr <-> expr iff (xnor)

Boolean operations can be applied only to boolean expressions.

Relational operators:

expr = expr equals

expr != expr not equals

expr > expr greater than

expr >= expr greater than or equals

expr < expr less than

expr <= expr less than or equals

Relational operators can be applied only to integer or boolean expressions.

Arithmetic operators:

Language Constructs

GDL: General Description Language 3 of 16

expr - expr minus

expr + expr plus

expr * expr multiplication

expr / expr division

expr mod expr modulo

Concatenation:

++

2.1.3 Operator precedence

The precedence of operators is as follows:

++ (concatenation) (highest precedence)

! (not)

+ -

* / mod

= != < <= > >=

Temporal operators

& (and)

| (or)

xor ^

<-> (iff)

-> (implies) (lowest precedence)

2.1.4 Case and If expressions

GDL provides two constructs which express a choice between two or more expressions. They are the
case and if expressions, described below.

The case expression has the following format:

case
 condition1 : expr1 ;

 condition2 : expr2 ;

 ...

Language Constructs

4 of 16 GDL: General Description Language

 else : exprn ;

esac

A case expression is evaluated as follows: condition1 is evaluated first. If it is true, expr1 is returned.
Otherwise, condition2 is evaluated. If it is true, expr2 is returned, and so forth. The else part is not
required, but if not present, the result is undefined. Notice that from the description of the case expres-
sion above, it follows that an earlier condition takes precedence over a later one. That is, if two con-
ditions are true, the first takes precedence.

The if expression is shorthand for a case with two entries. If has the following format:

if condition then exprA else exprB endif

In the above if expression, exprA is returned if condition is true, and exprB is returned if condition is
false.

Note: This section deals with if/case expressions rather than statements (if/case statements are
allowed only inside sequential processes. See Section 4.0). You cannot write, for example:

if c then assign a := x; b := y; else assign a := z; b := w; endif;

Instead, you should write:

assign a := if c then x else z endif; b := if c then y else w endif;

2.1.5 Non-deterministic choice
GDL uses non-determinism to describe many possible behaviors at once. The non-deterministic con-
structs of GDL have the following format:

{ expr1, expr2, ... , exprn } a non-deterministic choice, where ci is an enumerated constant.

expr1 union expr2: the union of choices represented by expri

n1 .. n2: another way to express {n1, n1+1,..., n2}, where ni are integers.

2.1.6 Other expressions
The following are also expressions:

(expr) a parenthesized expression

expr in {v1, v2, ... , vn} shorthand for
 ((expr = v1) | (expr = v2) | ... (expr = vn))

Language Constructs

GDL: General Description Language 5 of 16

2.2 The var statement

A var statement declares variables. It has the following format:

var name, name, ... : type; name, name, ... : type; ...

The type can be one of the following:

• boolean

• { enum1, enum2, ... }

• number1 .. number2

(Arrays will be described in Section 3.0.)

For instance, the following are legal var statements:

var request, acknowledge: boolean;

var state: {idle, reading, writing, hold};

var counter: {0, 1, 2, 3};

var length: 3 .. 15;

The first statement declares two variables, “request” and “acknowledge”, to be of type boolean. The
second statement declares a variable called “state” which can take on one of four enumerated values:
“idle”, “reading”, “writing” or “hold”. The third statement declares a variable called “counter” which
can take on the values 0, 1, 2 and 3. The fourth statement declares a variable called “length” which
can take on any of the values between 3 and 15, inclusive.

A var statement only declares state variables. The assign statement, described below, defines the
behavior of these variables.

2.3 The assign statement

An assign statement assigns a value to a variable declared with a var statement. It has one of the fol-
lowing formats:

assign init(name) := expression;

assign next(name) := expression;

assign name := expression;

Language Constructs

6 of 16 GDL: General Description Language

The first statement assigns an initial value to a state variable. The second statement defines the
next-state function of a state variable. A state variable assigned with an assign init and/or assign
next is simply a memory element, or register (flip-flop or latch). The third statement assigns a
value to a combinational state variable.

The following are examples of legal assign statements:

assign init(state) := idle;

assign next(state) :=

case
 reset : idle;

 state=idle : { idle, busy };

 state=busy & done : { idle };

else : state;

esac

The keyword assign may be omitted for the second and following consecutive assign statements.
Thus, the following:

assign var1 := xyz;

 init(var2) := abc;

 next(var2) := qrs;

is equivalent to:

assign var1 := xyz;

assign init(var2) := abc;

assign next(var2) := qrs;

2.4 The define statement

A define statement is used to give a name to a frequently-used expression, much like a macro in other
programming or hardware description languages. The define statement has the following format:

define name := expression;

For instance, the following are legal define statements:

define adef := (q | r) & (t | v);

define bb(0) := q & t; cc := 3;

As with the assign statement, the keyword define may be omitted in the second and following con-
secutive define statements.

Language Constructs

GDL: General Description Language 7 of 16

2.5 The module statement

An environment file can be totally flat, with no hierarchy at all. In this case all statements are consid-
ered to be enclosed by one big main module. However, it is usually more appropriate to write a mod-
ular and hierarchical environment. The module and instance statements are used for this purpose.

A module statement is used to define a module which can be instantiated a number of times, as in
hardware description languages. It has the following format:

module module_name (inputs) (outputs)

{

 statement;

 statement;

 ...

}

where inputs is a list of formal parameters passed to the module, outputs is a list of formal parameters
produced by the module, and statements is any sequence of var, assign, define, fairness and instance
statements. The input/output parameters can be thought of as input/output signals. Input parameters
are produced elsewhere, and they drive the module, while output parameters are produced by the
module itself and can be used elsewhere. A signal that appears as an output parameter of a module
must be defined and assigned a value in that module (var or define or instance output). If a signal
that appears as an input parameter of a module is not used in that module, RuleBase will issue a warn-
ing.

For instance, the following is a legal module statement:

module delayed_and (s1, s2) (out)
{

var out : boolean;
assign

init(out) := 0;

next(out) := s1 & s2;
}

Modules cannot be declared inside other modules but they can be used (instantiated) by other mod-
ules.

Language Constructs

8 of 16 GDL: General Description Language

2.6 The instance statement

A module statement is only a definition - it has no effect until it is instantiated (called). The instance
statement instantiates a module using the following format:

instance instance_name : module_name (inputs) (outputs);

where instance_name is the name of the specific instance (one module can be multiply instantiated),
module_name is the name of the module being instantiated, inputs is a list of expressions passed as
inputs to this instance and outputs is a list of output parameters, actually connecting the instance out-
puts to real signals of the design or the environment. An instance name is optional.

For example, the following is a legal instance statement, instantiating the two-input and-gate defined
in Section 2.5:

instance da : delayed_and(q,r)(t);

2.7 Scope rules

Statements inside a module cannot reference variables outside that module (no global symbols).
External signals and variables needed by the module must be passed as parameters to the instance. A
module can assign values to external signals and variables only by passing them as output parameters.

On the other hand, it is possible to reference internal signals of an instance from outside that instance.
For example, if module M has an internal signal Sig, and Ins is an instance of module M, one can
refer to signal Sig as Ins/Sig (‘/’ is the hierarchy character). This allows formulas to refer to the inter-
nal state of instances without the burden of exporting state variables. It also allows you to easily over-
ride parts of existing modules without changing the module definition.

2.8 Comments, macros and preprocessing

There are two types of comments in environment description files: 1) Text beginning with “--” and
ending at the end of line. 2) Text beginning with “/*” and ending with “*/”. Comment text is ignored.
A comment can be inserted anywhere a space is legal, except in text strings.

GDL supports cpp pre-processing directives (e.g., #define, #ifdef, #else, #include, and #undef), and
the PSL macros %for and %if.

Arrays

GDL: General Description Language 9 of 16

3.0 Arrays

3.1 Defining arrays

An array of state variables is defined as follows:

var name (index1 .. index2) : type ;

This defines (|index2-index1|+1) state variables named name(index1), ..., name(index2), where
index1 can be either greater or less than index2.

Examples:

var
 addr(0..7) : boolean; -- 8 boolean variables, addr(0), addr(1), ... , addr(7)

 counter(4..5) : 0..3; -- 2 integer variables, each can have the values 0,1,2,3

 status(3..0) : {empty, notempty, full };

 -- 4 variables, each can have the values empty, notempty, full

An array can also be defined with a define statement:

define name(index1 .. index2) := <expr>;

Example:

define masked_sig(0..3) := sig(0..3) & mask(0..3);

Note that the following line

var x(0..3) : { 5, 7, 13 };

defines an array of four integer variables, each of them can have the values 5, 7 or 13. This is not a
non-deterministic bit vector. To define a bit vector and assign to it the three values non-deterministi-
cally, do the following:

var x(0..3) : boolean; assign x(0..3) := { 5, 7, 13 };

3.2 Operations on arrays

Reference:

The simplest operation on an array is a reference to a bit or a bit range. One bit of an array is refer-
enced as array_name(N) where N is a constant. A range of bits is referenced as array_name(M..N).
It is always necessary to specify the bit range when referencing an array.

Arrays

10 of 16 GDL: General Description Language

It is possible to access an array element using a variable index as follows:
array_name(V: index1..index2) where V is an integer variable, and index1..index2 are constants

indicating its range. Example:

var source(0..7): boolean; V: 0..7;

define destination := source(V:0..7); -- assuming that the behavior of V is defined elsewhere

Other operations that can be used with any type of arrays are:

:= = !=

Example: aa(0..7) := if bb(0..2)=cc(0..2) then dd(0..7) else ee(1..8) endif;

The rest of the operators can be applied to boolean arrays (bit vectors) only.

Boolean connectives (bitwise): & | ^ ! -> <->

Both operands must be of the same width (unless one of them is constant). The result will have the
same width as the vector operands.

Example: v(0..7) := x(0..7) & y(0..7) | !z(0..7);

Relational: = < > <= >=

Both operands must be of the same width (unless one of them is constant). The result will be a sca-
lar boolean value.

Examples: c := v(0..7) > x(0..7); d := v(0..7) <= 16;

Arithmetic (unsigned): + - *

Both operands must be of the same width (unless one of them is constant). The result will have the
same width as the vector operands.

Examples:

 define cc1(0..7) := aa(0..7) + bb(0..7);

 cc2(0..7) := aa(0..7) + 1;

 cc3(0..7) := 10 * aa(0..7);

In order not to lose the most significant bits of the result, pad the operands with zeroes on the left.
Examples:

 define aa(0..7) := zeroes(4) ++ bb(0..3) * zeroes(4) ++ cc(0..3);

 co++sum(0..7) := 0++a(0..7) + 0++b(0..7);

(++ is the concatenation operator, described below. zeroes(4) is a vector of four zeroes)

Arrays

GDL: General Description Language 11 of 16

Shift: >> <<

The first operand must be a boolean vector and the second operand must be an integer constant or
variable. The result is a boolean vector of the same width as the first operand. These operations
perform the logical shift, i.e vacated bit positions are filled with zeroes.

Examples:

define cc(0..7) := aa(0..7) << 2;

var shift_amount: 0..5;

define dd(0..7) := bb(0..7) >> shift_amount;

 ee(0..8) := 0++ff(0..7) << 1;

3.3 Construction of bit vectors from bits or sub-vectors

The concatenation operator (++) is used to make bit vectors out of bits or smaller vectors:

expr ++ expr

Example:

define wide(0..5) := narrow(2..3) ++ bit1 ++ bit2 ++ another_narrow(0..1);

The concatenation operator can also appear on the left-hand-side of an assign or define statement. For
instance, the following statement:

define a ++ b ++ c(0..2) := d ++ 1 ++ 0 ++ e(0..1);

is equivalent to the following four statements:

define a := d; b := 1; c(0) := 0; c(1..2) := e(0..1);

The following built-in functions can help to construct arrays of repeated elements:

rep (expr, N) is equivalent to expr concatenated with itself N times.

Shorthands:

 zeroes(N) is equivalent to rep(0,N)

 ones(N) is equivalent to rep(1,N)

 nondets(N) is equivalent to rep({0..1},N)

3.4 More array examples

var a(0..3), b(0..8), c(0..2) : boolean;

define d(0..3) := b(5..8);-- different sub-ranges

Sequential Processes

12 of 16 GDL: General Description Language

define e(0..2) := b(2..0) & c(0..2);-- different directions

var x_state(0..2), y_state(0..2): {s1, s2, s3 };

var nda(0..2): boolean;

assign nda(0..2) := {001b, 010b, 111b}; -- non-deterministic assignment to a vector

assign next(a(0..2)) :=

case
 reset : 0;

 a(0..2) = b(0..2) : c(1..3);

 a(0..1) = 10B : d(0..2);

else : a(0..2);

esac;

var counter(0..7) : boolean;

assign
init(counter(0..7)) := 0;

next(counter(0..7)) := counter(0..7) + 1;

module and_or (a(0..7), b(0..7), c(0..7))(d(0..7))

{ define d(0..7) := a(0..7) & b(0..7) | c(0..7); }

instance a1 : and_or(x(0..7), y(7..0), z(0..7))(w(7..0));

4.0 Sequential Processes

Process constructs of GDL are similar to “process statements” of VHDL. They can be useful in situ-
ations when it is awkward to write explicit concurrent definitions for signals. Using process con-
structs, you can write your code in the form of sequences of statements, which are “executed” in each
cycle to compute the needed values of signals. The only statements allowed in a process are variable
declarations, variable assignments, IF statements and CASE statements.

As a simple example,

Sequential Processes

GDL: General Description Language 13 of 16

process {

var foo: boolean;

 foo := d1;

if c then foo := d2; endif;
}

is equivalent to the concurrent assignment

assign foo := if c then d2 else d1 endif;
(Of course, in this example the concurrent form is simpler than the process construct).

As a slightly more realistic example, suppose for the moment that we need to model a ripple-carry
adder in GDL, but for some reason cannot use the ’+’ operator:

process {

var sum(0..7): boolean;

var carry: boolean;

 carry := 0;

 %for i in 7..0 step -1 do
 sum(i) := x(i) ^ y(i) ^ carry;

 carry := (x(i) & y(i)) | (x(i) & carry) | (y(i) & carry);

 %end
}

Note that the carry signal is assigned several times in the process, and each stanza of the loop refers to
the value of carry valid for this specific stanza. if some code outside this process refers to the carry
signal, it will refer to the "final" value of carry, which in this case is the overflow bit of the adder.

It is convenient to think about processes as sequential code which is "executed" each cycle, but what
happens technically is that the tool analyzes the process construct, keeping track of interim assign-
ments, and generates concurrent definitions for signals driven by the process.

Now we shall take a closer look at the building blocks of a process construct.

1. Variable declarations

The process construct should contain var declarations for all signals which are assigned within the
process. The var declaration of each signal should appear before the first assignment to it.

2. Assignments

The three usual forms of RuleBase assignments are supported:

assign S := expr;

Sequential Processes

14 of 16 GDL: General Description Language

assign next (S) := expr;

assign init (S) := expr;

S is a signal or a concatenation of signals. The keyword assign can be omitted. Define constructs
are illegal within a process. .

The assignment of the first form:

 S := expr;

is similar to a variable assignment of VHDL and to a blocking assignment of Verilog, in that refer-
ences to S which are "executed" after this assignment will already refer to the new value of S. For
example,

 foo := 0;

 bar := foo;

foo := 1;

will assign 0 to bar (even in spite of the fact that foo is re-assigned later on).

The assignment of the form:

next (S) := expr;

behaves more like the signal assignment of VHDL and to non-blocking assignment of Verilog, in
that it doesn’t influence the values of S which can be observed in this cycle.

The use of next makes S a state variable.

next (foo) := 0;

 bar := foo;

will assign to bar the current-cycle value of foo, which is not necessarily 0. The next-cycle value
of foo will be 0 (in the absence of further assignments to ``next (foo)’’ in the process).

The assignment of the form:

init (S) := expr;

is very special in that it will be “executed” only in the very first cycle, and will have no effect in
subsequent cycles.

3. CASE statements

case
 guard1: stat1;

 guard2: stat2;

 ...

 guardn: statn;

else: state;

esac;

Sequential Processes

GDL: General Description Language 15 of 16

Each guardi is a boolean expression. The else clause is optional. Each stati is either a single
assignment, or an arbitrary sequence of statements enclosed in braces.

4. IF statements.

The IF can take one of two forms:

if condition then
 statements

endif;
or

if condition then
statements

else
 statements

endif;

We will conclude this section with an example of a process construct which makes use of different
statements:

module server (start,grant)(request,done)

{

process {

var state: { idle, wait, busy };

init(state) := idle;

next(state) := state; -- default behavior

var request, done: boolean; -- state machine outputs

 request := false; done := false; -- their default behavior

case
 state=idle & start:

next(state) := wait;

 state=wait: {

 request := true;

Sequential Processes

16 of 16 GDL: General Description Language

if grant then
next(state) := busy

endif;
 }

 state=busy: {

 done := {true,false};

if done then
next(state) := busy

endif;
 }

esac;

 } -- process

} -- module

